

Program #1
Multi-threaded Programming

Nathan Balon
SN# 3210 1717

CIS 450
Winter 2004

Due: 2/ 17/ 2004

 1

Introduction

The use of the multithreads in a program can have either a positive or a negative impact
on the performance of a program. Simply by making a program multithreaded, it will not
guarantee improved performance for the program. A program must be properly design to
use multiple-threads. If a program is poorly designed, it will very likely be the case that
the threads are hindering the performance of a program. Using threads can also increase
the complexity of the program. For instance, the programmer must worry about
synchronization of the global data in the program when multi-threads are used. If the
programmer fails to provide a synchronization method, it will very likely be the case that
the data in the program can become corrupt over time. If the synchronization methods
aren’t properly applied to the program, deadlocks will inevitably develop, and bring the
programs execution to a halt.

With these problems aside, a properly designed multi-threaded program can gain a
significant performance advantage. Two typical cases where using threads is beneficial
to performance, is with server programs such as a web or a database server and with user
interfaces. For example, a web server can listen for connection to be made and when
one is established, a new thread can be allocated to handle the communication from a poll
of available threads. Another instance where threads can also prove beneficial is they
allow a program to be logically divided. In the case of a user interface, one thread can be
used to read in data from a user and another thread can be used to write data to the user.
There are numerous other positive examples of how threads can be used to benefit a
program. The assignment that follows is to show instances of when the threads can be
beneficial in use with operating systems and when using threads can detract from
performance.

Assignment

The assignment includes creating two programs, which run on the Solaris operating
system. Each program is to have two different versions of it. One version is
multithreaded using pthreads and the other version is implemented with a single thread.
One program is to show a gain in performance because of using threads and the other on
does not improve performance. The programs are to be written in either C or C++.

Implementation

The programs for this assignment are all written in C. Each program is written as a
function in C so they can all be called from main in one program eliminating the need for
separate files. The programs were designed to be very static, so that runtime results
would be consistent for each execution of the program. There are many cases where
using threads would have a great improvement on performance but some such programs
would be hard to implement to produce reliable results. This severely limits the type of
programs that can be written to simple programs that are easily reproducible. Both of
the programs in this assignment are of limited real value in there current state. They are
used just to show simple examples of the impact of threads on performance.

 2

Computing the correct program runtime is crucial in all the programs. Each of the four
programs in the assignment uses the timespec structure to store the beginning and end
times of the program. A function print_prog_time() prints the runtime results of the
program in a user friendly format.

Aside from just comparing the results on Solaris I also ran the programs on in a single
processor computer running Redhat Linux 9.0. I wanted to determine the differences on
execution based on how the operating system used threads. In some of the case I noticed
a great difference in the relative performance of the program based on the computer the
program was run on.

Program 1

The first of the two programs to be compared are set_total and set_total_th. The purpose
of these programs is to show the effect that threads have on computing the total of a
number of sets in parallel. For this program a large multi-dimensional array is used to
hold the values of the sets. The arrays are then randomly filled with integer values to be
read later in the program. The arrays may not be a set in the true sense because for this
program there is the possibility that the number is repeated. After the arrays are given
values, the real work of the program starts that is be compared for its performance. Each
of the arrays in the program is totaled. While this totally has no real purpose it is used by
the program to show the effects of an intensive computation performed in parallel with
threads. For example, if there is a number array, which happens to be number[3][1000].
Then, there will be three number arrays, that each holds 1000 elements. The total the
1000 integer values in each array taken and the results from each of the set is displayed to
the user along with the total runtime of the program. In the case of the multithreaded
program three separate threads are created for this instance of the program. The number
of threads correlates to the number of sets. In the case of this program the runtime clock
in not started until all of the data in the sets is initialized.

In almost all cases that this program was ran the multi-threaded version of the program
received the best results. In the source code the size of the sets and the number of them
are defined at the top so they can easily be changed. So, during the execution of the
program the results were frequently changed to observe the impact of using different
numbers of threads for each set and a different number of values in it. The only time that
the performance of the program was found to significantly worsen, when using multiple
threads was when only a few numbers were in a set to be totaled. The cause of this is
associated with the overhead of creating the threads. When there were only 20 or 30
integers to be totaled in each set the non-threaded version outperformed the threaded
version. In the case of performing computation on a large set of data, the threaded
version of the program consistently returned the best results. The runtime of the multi-
threaded program on the average is about half of that of the single threaded program.

Below in figure 1 are the results of the program. The top portion of the figure is the
execution of the single threaded program has a runtime of 0.070s and the bottom is the

 3

multi-threaded program that has a runtime of 0.035s. From the figure it is clear that the
multi-threaded program achieves the best performance.

From these results it can be deduced that the server that the program was ran on contains
multiple processors. Using pthreads does not guarantee a performance gains from design
the threads to be ran in parallel. If only a single processor is available this program will
not achieve any performance gains. I ran the two programs on my home pc which has
Linux on it and got quite different results. On my home pc with Linux the threaded
version actually had worse performance. I concluded that the difference in the execution
came from the difference is how the operating systems support thread and possible
hardware differences.

Figure 1 - Results of Program 1 Set Total

Program 2

The second program used in the assignment counts the number of lines in a file. The
program reads the files in a certain directory and then counts the number of lines that are
contained within each file. The program will also display the result of the total number
of line read from all the files. This program works similar to the wc –l command in
UNIX. Each program is started from main by calling the function for the program. Each
of the functions takes the name of the directory to search through. Originally the
program was to accept command line arguments but to limit the involvement in
conducting the performance test that option was eliminated. Now it will only read from
what ever directory is passed to the function. The result of the execution of this program
is a printing of the files read from and the number of lines that are contained within each
file.

The results of this program are the opposite of program one. In this case, the use of
threads degrades the performance of the program. The program is completed almost
twice as fast when only a single thread is used. Figure 2 shows the output of the program
line count. The single thread version takes about 0.56s to complete compared to the
threaded version which takes 1.08s.

 4

There are a few reasons for the poor performance with this program. Most of which
result from poor us of threads by the programmer. For an illustration purposes, this
program was designed so that threads would have a negative impact on performance.
The multi-threaded version of the line count program could achieve some performance
gains if the program was modified. One problem with the program is that a new thread is
used for each file that is read. This causes a high amount of overhead for the program.
Even if the file contains only a few lines a new thread is created to read from the file.
Performance could be improved if threads were continued to be used but instead of
creating a new thread each time the program would acquire one from a pool of available
threads. After the thread completes reading from the file the thread is returned to the
pool to be further reused. This approach would cut down on a lot of the overhead in the
program.

Figure 2 - Line count programs output

